These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Up-regulation of low-threshold tetrodotoxin-resistant Na+ current via activation of a cyclic AMP/protein kinase A pathway in nociceptor-like rat dorsal root ganglion cells. Author: Scroggs RS. Journal: Neuroscience; 2011 Jul 14; 186():13-20. PubMed ID: 21549179. Abstract: The effects of forskolin on low-threshold tetrodotoxin-resistant (TTX-r) Na(+) currents was studied in small diameter (average ≈ 25 μm) dorsal root ganglion (DRG) cells. All DRG cells included in the study were categorized as type-2 or non-type-2 based on the expression of a low-threshold A-current. In all type-2 and some non-type-2 DRG cells held at -80 mV, the adenylyl cyclase (AC) activator forskolin (10 μM) up-regulated TTX-r Na(+) currents evoked with steps to -55 mV through -35 mV (low-threshold current). Up-regulation of low-threshold current by forskolin was mimicked by the protein kinase A (PKA) agonist Sp-cAMPs and the inflammatory mediator serotonin, and blocked by the PKA antagonist Rp-cAMPs. Forskolin-induced up-regulation of low-threshold current evoked from a holding potential of -60 mV was blocked by 40 ms steps to 0 mV, which presumably induced a long lasting inactivation of the low-threshold channels. Reducing to 3 ms the duration of steps to 0 mV, significantly increased the number of DRG cells where low-threshold current was up-regulated by forskolin, presumably by reducing the long-lasting inactivation of the low-threshold channels. In the same cells, high-threshold current, evoked by 40 ms or 3 ms steps to 0 mV, was consistently up-regulated by forskolin. The selective Na(V)1.8 channel blocker A-803467 markedly blocked high-threshold current but not low-threshold current. The different voltage protocols observed to activate and inactivate the low- and high-threshold currents, and the observation that A-803467 blocked high- but not low-threshold current suggests that the two currents were mediated by different channels, possibly Na(V)1.8 and Na(V)1.9, respectively. Inflammatory mediators may simultaneously up-regulate Na(V)1.8 and Na(V)1.9 channels in the same nociceptor via a AC/PKA signaling pathway, increasing nociceptor signaling strength, and lowering nociceptor threshold, respectively.[Abstract] [Full Text] [Related] [New Search]