These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evolution of a Neotropical marine fish lineage (Subfamily Chaenopsinae, Suborder Blennioidei) based on phylogenetic analysis of combined molecular and morphological data. Author: Lin HC, Hastings PA. Journal: Mol Phylogenet Evol; 2011 Aug; 60(2):236-48. PubMed ID: 21550409. Abstract: Phylogenetic relationships within tube blennies (Chaenopsinae) were reconstructed using Bayesian, maximum parsimony and likelihood analyses of multiple molecular markers (mitochondrial DNA: COI; nuclear DNA: TMO-4C4, RAG1, Rhodopsin, and Histone H3) and 148 morphological characters. This total-evidence based topology is well-resolved and congruent across analytical methods with strong support for the monophyly of the Chaenopsinae, all included genera and several internal nodes. A rapid radiation in the early evolution of chaenopsins is inferred from the relatively poor support values for relationships among basal lineages and their divergence into different habitats (rocky reefs, coral reefs and the reef/sand interface). Rates of molecular evolution in chaenopsins, as inferred by divergence among four putative transisthmian geminate species pairs, are rapid compared to other fishes. Conflicts among genetic markers and morphology are especially evident within the genus Coralliozetus, with different species relationships supported by morphology, TMO-4C4, and RAG1 plus Rhodopsin. This study hypothesizes a novel sistergroup relationship between Ekemblemaria and Hemiemblemaria, consistent with morphological, molecular and habitat use data. Our total evidence phylogenetic hypothesis indicates that previously hypothesized morphological characters supporting a close relationship between Hemiemblemaria and Chaenopsis plus Lucayablennius resulted from convergent evolution in these relatively free-swimming blennies.[Abstract] [Full Text] [Related] [New Search]