These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intracellular pH regulation in rabbit S3 proximal tubule: basolateral Cl-HCO3 exchange and Na-HCO3 cotransport.
    Author: Nakhoul NL, Chen LK, Boron WF.
    Journal: Am J Physiol; 1990 Feb; 258(2 Pt 2):F371-81. PubMed ID: 2155541.
    Abstract:
    We studied the role of basolateral HCO3- transport in the regulation of intracellular pH (pHi) in the isolated perfused S3 segment of the rabbit proximal tubule. pHi was calculated from absorbance spectra of the pH-sensitive dye dimethylcarboxyfluorescein. Solutions were normally buffered to pH 7.4 at 37 degrees C with 25 mM HCO3- 5% CO2. pHi fell by approximately 0.17 when luminal [HCO3-] was lowered to 5 mM at fixed PCO2 (i.e., reducing pH to 6.8) but by approximately 0.42 when [HCO3-] in the bath (i.e., basolateral solution) was lowered to 5 mM. The pHi decrease elicited by reducing bath [HCO3-] was substantially reduced by removal of Cl- or Na+, suggesting that components of basolateral HCO3- transport are Cl- and/or Na+ dependent. We tested for the presence of basolateral Cl-HCO3 exchange by removing bath Cl-. This caused pHi to increase by approximately 0.23, with an initial rate of approximately 100 X 10(-4) pH/s. Although the initial rate of this pHi increase was not reduced by removing Na+ bilaterally, it was substantially lowered by the nominal removal of HCO3- from bath and lumen or by the addition of 0.1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) to the bath. The results thus suggest that a Na-independent Cl-HCO3 exchanger is present at the basolateral membrane. We tested for the presence of basolateral Na-HCO3 cotransport by removing bath Na+. This caused pHi to fall reversibly by approximately 0.26 with initial rates of pHi decline and recovery being approximately 30 and approximately 41 X 10(-4) pH/s, respectively. Although the bilateral removal of Cl- had no effect on these rates, the nominal removal of HCO3- or the presence of DIDS substantially slowed the pHi changes. Thus, in addition to a Cl-HCO3 exchanger, the basolateral membrane of the S3 proximal tubule also appears to possess a Na-HCO3 cotransport mechanism. The data do not rule out the possibility of other basolateral HCO3- transporters.
    [Abstract] [Full Text] [Related] [New Search]