These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: O2- generation and lipid peroxidation during the oxidation of a glycated polypeptide, glycated polylysine, in the presence of iron-ADP.
    Author: Sakurai T, Sugioka K, Nakano M.
    Journal: Biochim Biophys Acta; 1990 Mar 12; 1043(1):27-33. PubMed ID: 2155661.
    Abstract:
    Oxidation of glycated polylysine, a model compound of glycated protein, caused O2- production even at physiological pH, which could be accelerated by Fe3(+)-ADP. An enediol structure in glycated polylysine and related compounds, which could be confirmed by I2 uptake, was related to their oxidizability. Glycated polylysine was easily coordinated with Fe3+ even in the presence of phosphate at pH 7.4 and the formation of the iron complex was prevented by desferrioxamine. The exposure of unsaturated phospholipid liposomes to glycated polylysine-Fe3(+)-ADP system caused the production of a thiobarbituric acid-reacting substance, which was completely inhibited by 5 microM alpha-tocopherol or 150 microM desferrioxamine and slightly by 0.5 microM SOD. Catalase (20 micrograms/ml) and 10 mM sodium-benzoate did not affect the iron-glycated polylysine-induced lipid peroxidation, indicating no participation of an OH. in this reaction. A ferrous ion-coordinated glycated polylysine may act as an initiator of phospholipid peroxidation in the presence of oxygen. A possible mechanism of the iron-glycated polylysine-induced lipid peroxidation was discussed.
    [Abstract] [Full Text] [Related] [New Search]