These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In situ phosphorylation of Akt and ERK1/2 in rat mammary gland, colon, and liver following treatment with human insulin and IGF-1.
    Author: Hvid H, Fels JJ, Kirk RK, Thorup I, Jensen HE, Hansen BF, Oleksiewicz MB.
    Journal: Toxicol Pathol; 2011 Jun; 39(4):623-40. PubMed ID: 21558470.
    Abstract:
    High doses of insulin and the insulin analog AspB10 have been reported to increase mammary tumor incidence in female rats likely via receptor-mediated mechanisms, possibly involving enhanced IGF-1 receptor activation. However, insulin and IGF-1 receptor functionality and intracellular signaling in the rat mammary gland in vivo is essentially unexplored. The authors investigated the effect of a single subcutaneous dose of 600 nmol/kg human insulin or IGF-1 on Akt and ERK1/2 phosphorylation in rat liver, colon, and mammary gland. Rat tissues were examined by Western blotting and immunohistochemistry by phosphorylation-specific antibodies. Insulin as well as IGF-1 caused Akt phosphorylation in mammary epithelial cells, with myoepithelial and basal epithelial cells being most sensitive. IGF-1 caused stronger Akt phosphorylation than insulin in mammary gland epithelial cells. Phosphorylation of ERK1/2 was not influenced by insulin or IGF-1. Rather, in liver and mammary gland P-ERK1/2 appeared to correlate with estrous cycling, supporting that ERK1/2 has important physiological roles in these two organs. In short, these findings supported that the rat mammary gland epithelium expresses functional insulin and IGF-1 receptors and that phosphorylation of Akt as well as ERK1/2 may be of value in understanding the effects of exogenous insulin in the rat mammary gland and colon.
    [Abstract] [Full Text] [Related] [New Search]