These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detection of antibiotic residues in bovine milk by a voltammetric electronic tongue system.
    Author: Wei Z, Wang J.
    Journal: Anal Chim Acta; 2011 May 23; 694(1-2):46-56. PubMed ID: 21565301.
    Abstract:
    A voltammetric electronic tongue (VE-tongue) was developed to detect antibiotic residues in bovine milk. Six antibiotics (Chloramphenicol, Erythromycin, Kanamycin sulfate, Neomycin sulfate, Streptomycin sulfate and Tetracycline HCl) spiked at four different concentration levels (0.5, 1, 1.5 and 2 maximum residue limits (MRLs)) were classified based on VE-tongue by two pattern recognition methods: principal component analysis (PCA) and discriminant function analysis (DFA). The VE-tongue was composed of five working electrodes (gold, silver, platinum, palladium, and titanium) positioned in a standard three-electrode configuration. The Multi-frequency large amplitude pulse voltammetry (MLAPV) which consisted of four segments (1 Hz, 10 Hz, 100 Hz and 1000 Hz) was applied as potential waveform. The six antibiotics at the MRLs could not be separated from bovine milk completely by PCA, but all the samples were demarcated clearly by DFA. Three regression models: Principal Component Regression Analysis (PCR), Partial Least Squares Regression (PLSR), and Least Squares-Support Vector Machines (LS-SVM) were used for concentrations of antibiotics prediction. All the regression models performed well, and PCR had the most stable results.
    [Abstract] [Full Text] [Related] [New Search]