These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Stimulation of ATP-driven Ca2+ pump in the basal-lateral plasma membranes of kidney cortex during compensatory renal growth.
    Author: Hadzić A, Sabolić I, Banfić H.
    Journal: Biochim Biophys Acta; 1990 Mar; 1022(3):265-72. PubMed ID: 2156554.
    Abstract:
    During compensatory renal growth 45Ca2+ transport in basal-lateral plasma membrane vesicles isolated from the rat renal cortex have been investigated. Stimulation of Ca2(+)-ATPase activity was observed, without an effect of compensatory renal growth on Na+/Ca2+ exchanger activity and on passive Ca2+ permeability of the vesicles. Twelve hours following unilateral nephrectomy about 40% increase of Ca2(+)-ATPase activity above control value was observed and this effect was present until the end of the experimental period (7 days). When kinetic parameters for Ca2(+)-ATPase were studied in native membranes, an increase of Vmax was observed, whereas the Km for Ca2+ was similar in control vesicles and vesicles isolated from the remnant kidney. Depletion of endogenous calmodulin resulted in a decrease of Vmax and an increase of Km (Ca2+), while its addition reversed these parameters and increased the Hill coefficient from about 1 to about 2. Once again, only a significant increase of Vmax in vesicles isolated from the remnant kidney above the control value was observed. Finally, increase of Ca2(+)-ATPase activity during compensatory renal growth could be abolished by actinomycin D, indicating that its stimulation is due to protein synthesis.
    [Abstract] [Full Text] [Related] [New Search]