These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of enhanced melibiose transport rate catalyzed by an Escherichia coli lactose carrier mutant with leucine substituted for serine-306. The pH-dependence of melibiose efflux.
    Author: King SC, Wilson TH.
    Journal: Biochim Biophys Acta; 1990 Mar; 1022(3):373-80. PubMed ID: 2156561.
    Abstract:
    The mechanism of melibiose transport was studied in cells containing plasmid pAA22 which expresses the mutant lactose carrier (serine-306 to leucine) cloned from Escherichia coli AA22. These studies were of interest because several lines of evidence suggested that the AA22 mutation conferred novel properties upon the lactose carrier, decreasing turnover with several beta-galactoside substrates, increasing turnover with melibiose, and abolishing active accumulation even though equilibration occurred via symport with H+. Although severely defective in active melibiose accumulation, the present study indicates that in cells poisoned with azide the AA22 carrier does in fact equilibrate melibiose across the membrane more rapidly than the normal lactose carrier. Similarly, melibiose efflux from cells preloaded with melibiose was more rapidly catalyzed by the AA22 carrier than by the normal carrier (pH 7.0). Furthermore, although external H+ did reduce net melibiose efflux to a rate slower than seen in equilibrium exchange, a lower than normal pH was required to achieve this effect. Therefore, at pH 7.0, the AA22 carrier (but not the normal carrier) catalyzed net efflux at a rate approaching that for the exchange process (which was pH-resistant in both the mutant and the parent). At pH 8.0 both the AA22 carrier and the normal carrier catalyzed net melibiose efflux at a rate identical to the equilibrium exchange rate. We suggest (i) that the sensitivity of melibiose efflux to external pH indicates that during efflux the AA22 carrier interacts with protons in a manner similar to the normal carrier (i.e., sugar is cotransported with H+) and hence the absence of accumulation is not explained by internal leak via a binary carrier-melibose complex; and (ii) that the modest increase in rate constants for melibiose exit reflect small changes in activation energy (1 kcal/mol) consistent with a steric mechanism possibly involving van der Waals contacts.
    [Abstract] [Full Text] [Related] [New Search]