These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Author: Kondrat S, Georgi N, Fedorov MV, Kornyshev AA. Journal: Phys Chem Chem Phys; 2011 Jun 21; 13(23):11359-66. PubMed ID: 21566824. Abstract: Recently observed anomalous properties of ionic-liquid-based nanoporous supercapacitors [C. Largot et al., J. Am. Chem. Soc., 2008, 130, 2730-2731] have attracted much attention. Here we present Monte Carlo simulations of a model ionic liquid in slit-like metallic nanopores. We show that exponential screening of the electrostatic interactions of ions inside a pore, as well as the image-charge attraction of ions to the pore surface, lead to the 'anomalous' increase of the capacitance with decreasing the pore width. The simulation results are in good agreement with the experimental data. The capacitance as a function of voltage is almost constant for low voltages and vanishes above a certain threshold voltage. For very narrow pores, these two regions are separated by a peak. With increase of the pore size the peak turns into a bump and disappears for wide pores. This effect, related to a specific character of the voltage-induced filling of nanopores with counterions at high densities, is yet to be verified experimentally.[Abstract] [Full Text] [Related] [New Search]