These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitrogen-doped anatase nanofibers decorated with noble metal nanoparticles for photocatalytic production of hydrogen. Author: Wu MC, Hiltunen J, Sápi A, Avila A, Larsson W, Liao HC, Huuhtanen M, Tóth G, Shchukarev A, Laufer N, Kukovecz Á, Kónya Z, Mikkola JP, Keiski R, Su WF, Chen YF, Jantunen H, Ajayan PM, Vajtai R, Kordás K. Journal: ACS Nano; 2011 Jun 28; 5(6):5025-30. PubMed ID: 21568315. Abstract: We report the synthesis of N-doped TiO(2) nanofibers and high photocatalytic efficiency in generating hydrogen from ethanol-water mixtures under UV-A and UV-B irradiation. Titanate nanofibers synthesized by hydrothermal method are annealed in air and/or ammonia to achieve N-doped anatase fibers. Depending on the synthesis route, either interstitial N atoms or new N-Ti bonds appear in the lattice, resulting in slight lattice expansion as shown by XPS and HR-TEM analysis, respectively. These nanofibers were then used as support for Pd and Pt nanoparticles deposited with wet impregnation followed by calcination and reduction. In the hydrogen generation tests, the N-doped samples were clearly outperforming their undoped counterparts, showing remarkable efficiency not only under UV-B but also with UV-A illumination. When 100 mg of catalyst (N-doped TiO(2) nanofiber decorated with Pt nanoparticles) was applied to 1 L of water-ethanol mixture, the H(2) evolution rates were as high as 700 μmol/h (UV-A) and 2250 μmol/h (UV-B) corresponding to photo energy conversion percentages of ∼3.6 and ∼12.3%, respectively.[Abstract] [Full Text] [Related] [New Search]