These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coupling of glutamatergic receptors to changes in intracellular Ca2+ in rat cerebellar granule cells in primary culture. Author: Holopainen I, Louve M, Enkvist MO, Akerman KE. Journal: J Neurosci Res; 1990 Feb; 25(2):187-93. PubMed ID: 2157031. Abstract: Changes in cytosolic free Ca2+ concentrations, [Ca2+]i, in response to glutamate and glutamate receptor agonists were measured in rat cerebellar granule cells grown on coverslips. The intracellular Ca2+ as measured with fura-2 increased by applying kainate, N-methyl-D-aspartate (NMDA), quisqualate, and (RS)-d-amino-3-hydroxy-5-methyl-4-isoxazole-propionic (AMPA). When the extracellular Mg2+ was removed, the effects of NMDA and the NMDA receptor agonist cis-(+-)-1-amino-1,3-cyclopentanedicarboxylic acid (cis-ACPD) on intracellular Ca2+ were augmented. Glycine potentiated the effects of NMDA and cis-ACPD if the membrane was depolarized by increasing the extracellular K+ concentration. The NMDA receptor antagonist DL-2-amino-5-phosphonopentanic acid (AP5) abolished and the antagonist 3-([+-]-2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) greatly reduced the effect of NMDA in both the normal and the Mg-free media. The dose-response curves of NMDA and, to a lesser extent, of kainate were shifted to the left, and that of quisqualate became biphasic in the Mg-free medium. The increase in [Ca2+]i produced by high quisqualate concentrations in the Mg-free medium was totally abolished by AP5. The results suggest that Ca2+ influx in cerebellar granule cells occurs through both NMDA- and non-NMDA-coupled ion channels. A part of the quisqualate-induced rise in cytosolic Ca2+ seems to be linked to the activation of NMDA receptors.[Abstract] [Full Text] [Related] [New Search]