These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Author: Ziaf K, Loukehaich R, Gong P, Liu H, Han Q, Wang T, Li H, Ye Z. Journal: Plant Cell Physiol; 2011 Jun; 52(6):1055-67. PubMed ID: 21576192. Abstract: Wild species often show more tolerance to environmental stress factors than their cultivated counterparts. An early responsive-to-dehydration gene was cloned from a drought- and salt-tolerant wild tomato Solanum pennellii (SpERD15). SpERD15 transcript accumulated differentially in different organs, and was remarkably induced by dehydration, salinity, cold and treatment with plant growth regulators. The protein encoded by SpERD15 was predominantly localized in the nucleus. Interestingly, we found that the majority of the transgenic tobacco plants were co-suppressed along with the overexpressing line. Overexpressing plants manifested stress tolerance accompanied by the accumulation of more soluble sugars and proline, and limited lipid peroxidation compared with co-suppression lines, which were more sensitive than the wild type. The differential contents of these compatible solutes in different transgenic lines were related to the changes in the expression of the genes involved in the production of some important osmolytes (P5CS and Sucrose synthase). Reduced lipid peroxidation over a broad range of stress factors was in agreement with increased expression of stress-responsive genes (ADH and GAPDH). Overexpression of SpERD15 increased the efficiency of PSII (F(v)/F(m)) in transgenic tobacco plants by maintaining PSII quinone acceptors in a partially oxidized form. The results show that SpERD15 augments stress tolerance by enhancing the efficiency of PSII through the protection of cellular membranes, as conferred by the accumulation of compatible solutes and limited lipid peroxidation.[Abstract] [Full Text] [Related] [New Search]