These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cholera toxin differentially decreases membrane levels of alpha and beta subunits of G proteins in NG108-15 cells. Author: Klinz FJ, Costa T. Journal: Eur J Biochem; 1990 Mar 30; 188(3):567-76. PubMed ID: 2158884. Abstract: Treatment of NG108-15 neuroblastoma x glioma cells (24 h) with cholera toxin (0.1-10 micrograms/ml) resulted in a concentration-dependent reduction of the membrane levels of subunits of GTP-binding regulatory proteins (G proteins), as determined by quantitative immunoblot procedures. The extent of reduction differed for different types of subunits: the levels of Go alpha and G beta 1 were reduced by 40-50%, whereas those of G alpha common immunoreactivity and Gi2 alpha were only reduced by 10-20% following treatment with 10 micrograms/ml cholera toxin. This effect of the toxin could not be mimicked by incubation with the resolved B oligomer of cholera toxin, nor by exposure of cells to agents able to raise the intracellular levels of cAMP. Basal adenylate cyclase was stimulated in a biphasic manner by cholera toxin, being stimulated at low concentrations (0.01-10 ng/ml) and then decreased at high (0.1-10 micrograms/ml) concentrations. Thus, the down regulation of G-protein subunits produced by cholera toxin requires its (ADP-ribosyl)transferase activity but does not result from a cAMP-mediated mechanism. The toxin-mediated decrease of Go alpha in the membrane was correlated with a diminution of opioid-receptor-mediated stimulation of high-affinity GTPase activity, suggesting that opioid receptors interact with Go in native membranes of NG108-15 cells. Northern-blot analysis of cytoplasmic RNA prepared from cells treated with cholera toxin showed that the levels of mRNA coding for G beta 1 did not change. Thus, the cholera-toxin-induced decrease of G-protein subunits may not result from an alteration in mRNA levels, but may involve a direct effect of the toxin on the process of insertion and/or clearance of G proteins into and/or from the membrane. These data indicate that cholera toxin, besides catalyzing the ADP-ribosylation of Gs and Gi/Go types of G proteins, can also reduce the steady state levels of Go alpha and G beta 1 subunits in the membrane and thus alter by an additional mechanism the function of inhibitory receptor systems.[Abstract] [Full Text] [Related] [New Search]