These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The robustness of Caenorhabditis elegans male mating behavior depends on the distributed properties of ray sensory neurons and their output through core and male-specific targets.
    Author: Koo PK, Bian X, Sherlekar AL, Bunkers MR, Lints R.
    Journal: J Neurosci; 2011 May 18; 31(20):7497-510. PubMed ID: 21593334.
    Abstract:
    Many evolutionarily significant behaviors, such as mating, involve dynamic interactions with animate targets. This raises the question of what features of neural circuit design are essential to support these complex types of behavior. The Caenorhabditis elegans male uses 18 ray sensilla of the tail to coordinate mate apposition behavior, which facilitates a systematic search of the hermaphrodite surface for the vulva. Precisely how ray neuron types, A and B, robustly endow the male with a high degree of spatial and temporal precision is unknown. We show that the appositional postures that drive the search trajectory reflect the complex interplay of ray neuron type-induced motor outputs. Cell-type-specific ablations reveal that the A-neurons are required for all appositional postures. Their activity is instructive because the A-neurons can induce scanning- and turning-like appositional postures when artificially activated with channel rhodopsin (ChR2). B-neurons are essential only for initiation of the behavior in which they enhance male responsiveness to hermaphrodite contact. When artificially activated using ChR2, A- and B-neurons produce different tail ventral curl postures. However, when coactivated, A-neuron posture dominates, limiting B-neuron contributions to initiation or subsequent postures. Significantly, males lacking the majority of rays retain a high degree of postural control, indicating significant functional resilience in the system. Furthermore, eliminating a large number of male-specific ray neuron targets only partially attenuates tail posture control revealing that gender-common cells make an important contribution to the behavior. Thus, robustness may be a crucial feature of circuits underlying complex behaviors, such as mating, even in simple animals.
    [Abstract] [Full Text] [Related] [New Search]