These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of 1 alpha, 25-dihydroxyvitamin D3 on the human chronic myelogenous leukemia cell line RWLeu-4. Author: Lasky SR, Bell W, Huhn RD, Posner MR, Wiemann M, Calabresi P, Eil C. Journal: Cancer Res; 1990 May 15; 50(10):3087-94. PubMed ID: 2159372. Abstract: The effects of 1 alpha, 25-dihydroxyvitamin D3 (VD3) on proliferation, differentiation, and macromolecular synthesis in the new Philadelphia chromosome-positive chronic myelogenous leukemia cell line, RWLeu-4, were investigated. Binding of [3H]VD3 was saturable, with approximately 2000-3000 sites/cell, and half-maximal binding occurring at 0.21-0.33 nM. Treatment of RWLeu-4 cells with VD3 induced 24R-hydroxylase activity, a marker of vitamin D3 responsiveness in many tissues. Exposure of RWLeu-4 cells to VD3 also inhibited proliferation and DNA synthesis with a 50% effective dose of 3.5-10 nM within 72 h; in addition, protein and RNA synthesis were inhibited by VD3 treatment. Exposure of RWLeu-4 cells to 5 nM VD3 for 72 h caused 50% of the cells to differentiate into macrophage/monocyte type cells as judged by nitroblue tetrazolium staining and adherence to plastic. Progressive expression of cell surface maturation-specific antigens of the monocyte/macrophage lineage was induced by treatment of RWLeu-4 cells with VD3 for 24 to 72 h at doses that inhibited cellular proliferation. c-myc RNA, which is constitutively expressed in RWLeu-4 cells, increased after 0.5 h of treatment with 50 nM VD3 and then rapidly decreased to barely detectable levels after 4 h of treatment. Finally, the in vitro tyrosine kinase activity associated with the p210bcr-abl oncogene product was decreased approximately 50% by VD3 treatment. Because of the presence of a functional receptor-effector system for VD3 and multiple biological responses to the hormone, these cells provide a unique model system with which to probe the specific effects of VD3 on cell growth and differentiation in chronic myelogenous leukemia.[Abstract] [Full Text] [Related] [New Search]