These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A GTP-binding protein activates chloride channels in a renal epithelium.
    Author: Schwiebert EM, Light DB, Fejes-Toth G, Naray-Fejes-Toth A, Stanton BA.
    Journal: J Biol Chem; 1990 May 15; 265(14):7725-8. PubMed ID: 2159454.
    Abstract:
    Although G proteins have been shown to regulate cation channels, regulation of Cl- channels by G proteins has not been demonstrated directly. Accordingly, the objective of this study was to examine whether a G protein regulates Cl- channels in the apical membrane of rabbit kidney CCD cells grown in culture. Previous studies showed that this channel is activated by adenosine and protein kinase C and has a single channel conductance of 305 picosiemens. The PCl-:PNa+ is 9:1 and the PCl-:PHCO3- is 2:1 (Schwiebert, E.M., Light, D.B., Dietl, P., Fejes-Toth, G., Naray-Fejes-Toth, A., and Stanton, B. (1990) Kidney Int. 37,216). In the present study, Cl- channels in the apical membrane of CCD cells were studied by the patch clamp technique. GTP and guanosine 5'-O(3-thiophosphate) (GTP gamma S), a nonhydrolyzable analog of GTP, increased the single channel open probability (Po). In contrast, guanosine 5'-O-(2-thiophosphate), a nonhydrolyzable analog of GDP, and pertussis toxin (PTX) decreased the Po. GTP gamma S, but not GTP, reversed PTX inhibition of the channel. The alpha i-3-subunit of Gi increased the Po in both untreated and PTX-treated membrane patches. Because GTP gamma S activated the Cl- channel in the presence of H8, a protein kinase inhibitor, we conclude that the G protein does not activate the channel by stimulating a protein kinase. Thus, a PTX-sensitive G protein activates a Cl- channel in the apical membrane of renal CCD cells.
    [Abstract] [Full Text] [Related] [New Search]