These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mutations which alter the level or structure of nsP4 can affect the efficiency of Sindbis virus replication in a host-dependent manner.
    Author: Lemm JA, Durbin RK, Stollar V, Rice CM.
    Journal: J Virol; 1990 Jun; 64(6):3001-11. PubMed ID: 2159558.
    Abstract:
    Two mutants of Sindbis virus have been isolated which grow inefficiently at 34.5 degrees C in mosquito cells yet replicate normally in chicken embryo fibroblast cells at the same temperature. In addition, these mutants exhibit temperature-sensitive growth in both cell types and are RNA- at the nonpermissive temperatures (K.J. Kowal and V. Stollar, Virology 114:140-148, 1981). To clarify the basis of this host restriction, we have mapped the causal mutations for these temperature-dependent, host-restricted mutants. Functional mapping and sequence analysis of the mutant cDNAs revealed several mutations which mapped to the amino terminus of nsP4, the putative polymerase subunit of the viral RNA replicase. These mutations resulted in the following amino acid changes in nsP4: leucine to valine at residue 48, aspartate to glycine at residue 142, and proline to arginine at residue 187. Virus containing any of these mutations was restricted in its ability to replicate in mosquito but not chicken embryo fibroblast cells at 34.5 degrees C. In addition to its temperature-dependent, host-restricted phenotype, virus derived from one cDNA clone also exhibited decreased levels of nsP34 and nsP4 yet contained only a silent change in its genome. This C-to-U mutation occurred at nucleotide 5751, the first nucleotide after the opal termination codon separating nsP3 and nsP4. Our results suggest that this substitution decreases readthrough of the opal codon and diminishes production of nsP34 and nsP4. Such a decrease in synthesis rates might lead to levels of these products which are insufficient for viral RNA replication in mosquito cells at the higher temperature. This work provides the first evidence that nsP4 function can be strongly influenced by the host environment.
    [Abstract] [Full Text] [Related] [New Search]