These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gestational nicotine exposure regulates expression of AMPA and NMDA receptors and their signaling apparatus in developing and adult rat hippocampus.
    Author: Wang H, Dávila-García MI, Yarl W, Gondré-Lewis MC.
    Journal: Neuroscience; 2011 Aug 11; 188():168-81. PubMed ID: 21596105.
    Abstract:
    Untimely activation of nicotinic acetylcholine receptors (nAChRs) by nicotine results in short- and long-term consequences on learning and behavior. In this study, the aim was to determine how prenatal nicotine exposure affects components of glutamatergic signaling in the hippocampus during postnatal development. We investigated regulation of both nAChRs and glutamate receptors for AMPA and N-methyl-D-aspartate (NMDA), from postnatal day 1 (P1) to P63 after a temporally restricted exposure to saline or nicotine for 14 days in utero. We analyzed postsynaptic density components associated with AMPA receptor (AMPAR) and NMDA receptor (NMDAR) signaling: calmodulin (CaM), CaM Kinase II alpha (CaMKIIα), and postsynaptic density-95 (PSD95), as well as presynaptically localized synaptosomal-associated protein 25 (SNAP25). At P1, there was significantly heightened expression of AMPAR subunit GluR1 but not GluR2, and of NMDAR subunits NR1, NR2a, and NR2d but not NR2b. NR2c was not detectable. CaM, CaMKIIα, and PSD95 were also significantly upregulated at P1, together with presynaptic SNAP25. This enhanced expression of glutamate receptors and signaling proteins was concomitant with elevated levels of [³H]epibatidine (³H]EB) binding in prenatal nicotine-exposed hippocampus, indicating that α4β2 nAChR may influence glutamatergic function in the hippocampus at P1. By P14, neither [³H]EB binding nor the expression levels of subunits GluR1, GluR2, NR1, NR2a, NR2b, NR2c, or NR2d seemed changed with prenatal nicotine. However, CaMKIIα was significantly upregulated with nicotine treatment while CaM showed downregulation at P14. The effects of nicotine persisted in P63 young adult brains which exhibited significantly downregulated GluR2, NR1, and NR2c expression levels in hippocampal homogenates and a considerably muted overall distribution of [³H]AMPA binding in areas CA1, CA2 and CA3, and the dentate gyrus. Our results suggest that prenatal nicotine exposure can regulate the glutamatergic signaling system throughout postnatal development by enhancing or inhibiting availability of AMPAR and NMDAR or their signaling components. The persistent depression, in adults, of the requisite NR1 subunit for NMDAR assembly, and of GluR2, important for assembly, trafficking, and biophysical properties of AMPAR, indicates that nicotine may alter ionotropic glutamate receptor stoichiometry and functional properties in adults after prenatally restricted nicotine exposure.
    [Abstract] [Full Text] [Related] [New Search]