These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA topoisomerase I as a site of action for 10-hydroxycamptothecin in human promyelocytic leukemia cells. Author: Ling YH, Andersson BS, Nelson JA. Journal: Cancer Biochem Biophys; 1990 Jan; 11(1):23-30. PubMed ID: 2159843. Abstract: We investigated the antiproliferative effect of 10-hydroxycamptothecin (HCPT), an alkaloid isolated from Camptotheca acuminata, on the human promyelocytic leukemia cell line, HL-60, and a 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA)-resistant mutant, HL-60/m-AMSA. Using trypan blue dye exclusion and colony formation, doses of HCPT ranging from 0.01 to 1 microM progressively inhibited growth in both cell lines in a concentration-dependent manner. A minimal cross-resistance, approximately five-fold, between the wild-type and resistant cells was observed. Using the technique of alkaline elution, HCPT produced DNA single-strand breaks and protein-associated DNA strand cleavage in HL-60 and HL-60/m-AMSA cells. Quantitative analysis of drug-induced protein-DNA complexes was performed using sodium dodecyl sulfate-potassium chloride precipitation. In both cell lines, a good correlation with HCPT-induced cytotoxicity was observed. Similar results were achieved in wild-type cells treated with m-AMSA. Enzyme activity was measured in nuclei isolated from HL-60 and HL-60/m-AMSA cells, and in each case HCPT inhibited topoisomerase I activity to the same extent. The data suggest that the principle mechanisms for HCPT-induced cytotoxicity in HL-60 and HL-60/m-AMSA cells are inhibition of DNA topoisomerase I and production of protein-associated DNA strand breaks.[Abstract] [Full Text] [Related] [New Search]