These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electrolyte-induced inversion layer Schottky junction solar cells.
    Author: Wadhwa P, Seol G, Petterson MK, Guo J, Rinzler AG.
    Journal: Nano Lett; 2011 Jun 08; 11(6):2419-23. PubMed ID: 21598913.
    Abstract:
    A new type of crystalline silicon solar cell is described. Superficially similar to a photoelectrochemical cell a liquid electrolyte creates a depletion (inversion) layer in an n-type silicon wafer, however no regenerative redox couple is present to ferry charge between the silicon and a counter electrode. Instead holes trapped in the electrolyte-induced inversion layer diffuse along the layer until they come to widely spaced grid lines, where they are extracted. The grid lines consist of a single-walled carbon nanotube film etched to cover only a fraction of the n-Si surface. Modeling and simulation shows the inversion layer to be a natural consequence of the device electrostatics. With electronic gating, recently demonstrated to boost the efficiency in related devices, the cell achieves a power conversion efficiency of 12%, exceeding the efficiency of dye sensitized solar cells.
    [Abstract] [Full Text] [Related] [New Search]