These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Using force-matching to reveal essential differences between density functionals in ab initio molecular dynamics simulations. Author: Izvekov S, Swanson JM. Journal: J Chem Phys; 2011 May 21; 134(19):194109. PubMed ID: 21599046. Abstract: The exchange-correlation (XC) functional and value of the electronic fictitious mass μ can be two major sources of systematic errors in ab initio Car-Parrinello Molecular Dynamics (CPMD) simulations, and have a significant impact on the structural and dynamic properties of condensed-phase systems. In this work, an attempt is made to identify the origin of differences in liquid water properties generated from CPMD simulations run with the BLYP and HCTH∕120 XC functionals and two different values of μ (representative of "small" and "large" limits) by analyzing the effective pairwise atom-atom interactions. The force-matching (FM) algorithm is used to map CPMD interactions into non-polarizable, empirical potentials defined by bonded interactions, pairwise short-ranged interactions in numerical form, and Coulombic interactions via atomic partial charges. The effective interaction models are derived for the BLYP XC functional with μ=340 a.u. and μ=1100 a.u. (BLYP-340 and BLYP-1100 simulations) and the HCTH∕120 XC functional with μ=340 a.u. (HCTH-340 simulation). The BLYP-340 simulation results in overstructured water with slow dynamics. In contrast, the BLYP-1100 and HCTH-340 simulations both produce radial distribution functions (indicative of structure) that are in reasonably good agreement with experiment. It is shown that the main difference between the BLYP-340 and HCTH-340 effective potentials arises in the short-ranged nonbonded interactions (in hydrogen bonding regions), while the difference between the BLYP-340 and BLYP-1100 interactions is mainly in the long-ranged electrostatic components. Collectively, these results demonstrate how the FM method can be used to further characterize various simulation ensembles (e.g., density-functional theory via CPMD). An analytical representation of each effective interaction water model, which is easy to implement, is presented.[Abstract] [Full Text] [Related] [New Search]