These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Genotoxic and clastogenic activity of saponins extracted from Nauclea bark as assessed by the micronucleus and the comet assays in Chinese Hamster Ovary cells. Author: Liu W, Di Giorgio C, Lamidi M, Elias R, Ollivier E, De Méo MP. Journal: J Ethnopharmacol; 2011 Sep 01; 137(1):176-83. PubMed ID: 21600276. Abstract: ETHNOPHARMACOLOGICAL RELEVANCE: Bark extracts of Nauclea latifolia, Nauclea diderrichii, Nauclea pobeguinii and Nauclea vandergutchii are used in traditional medicine in West and South Africa for the treatment of fevers, diarrhea and malaria. AIM OF THE STUDY: To estimate the possible long-term toxicity and genotoxicity of plant extracts (dichloromethane, methanol, water/methanol, water) and saponins. MATERIALS AND METHODS: The clastogenicity of plant extracts and saponins was assessed by the micronucleus assay performed on Chinese Hamster Ovary cells. The DNA-damaging activity of saponin mixture was assessed by the comet assay on Chinese Hamster ovary cells. RESULTS: Hydromethanolic extracts from Nauclea latifolia, Nauclea diderrichii and Nauclea pobeguinii exhibited a significant clastogenic/aneugenic activity without S9 mix. The hydromethanolic extract from Nauclea diderrichii was the most clastogenic/aneugenic fraction with a Minimal Active Concentration (MAC) of 23.1 μgm L(-1). It was submitted to a separation step leading to six main saponins identified as quinovic acid glycosides (saponins A, D, E, G, J, K). None of the isolated saponins exerted a significant clastogenic/aneugenic activity by the micronucleus assay, however a mixture made with equal quantities of each of the six saponins exhibited a direct genotoxic/clastogenic activity as assessed by both the micronucleus assay and the comet assay on Chinese Hamster Ovary cells. CONCLUSION: Saponins present in the hydromethanolic extracts of Nauclea induced synergistic in vitro DNA-damage and chromosome mutations in mammalian cells. This genotoxic activity was probably due to the capacity of Nauclea saponins to reduce cell defense against oxidative stress through the inhibition of glutathione-S-transferase activity.[Abstract] [Full Text] [Related] [New Search]