These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prior exposure to oxidized low-density lipoprotein limits apoptosis in subsequent generations of endothelial cells by altering promoter methylation. Author: Mitra S, Khaidakov M, Lu J, Ayyadevara S, Szwedo J, Wang XW, Chen C, Khaidakov S, Kasula SR, Stone A, Pogribny I, Mehta JL. Journal: Am J Physiol Heart Circ Physiol; 2011 Aug; 301(2):H506-13. PubMed ID: 21602467. Abstract: Oxidized LDL (ox-LDL) plays a critical role in atherogenesis, including apoptosis. As hypercholesterolemia causes epigenetic changes resulting in long-term phenotypic consequences, we hypothesized that repeated and continuous exposure to ox-LDL may alter the pattern of apoptosis in human umbilical vein endothelial cells (HUVECs). We also analyzed global and promoter-specific methylation of apoptosis-related genes. As expected, ox-LDL evoked a dose-dependent increase in apoptosis in the first passage HUVECs that was completely abrogated by lectin-like ox-LDL receptor (LOX-1)-neutralizing antibody. Ox-LDL-induced apoptosis was associated with upregulation of proapoptotic LOX-1, ANXA5, BAX, and CASP3 and inhibition of antiapoptotic BCL2 and cIAP-1 genes accompanied with reciprocal changes in the methylation of promoter regions of these genes. Subsequent passages of cells displayed attenuated apoptotic response to repeat ox-LDL challenge with blunted gene expression and exaggerated methylation of LOX-1, BAX, ANXA5, and CASP3 genes (all P < 0.05 vs. first exposure to ox-LDL). Treatment of cells with LOX-1 antibody before initial ox-LDL treatment prevented both gene-specific promoter methylation and expression changes and reduction of apoptotic response to repeat ox-LDL challenge. Based on these data, we conclude that exposure of HUVECs to ox-LDL induces epigenetic changes leading to resistance to apoptosis in subsequent generations and that this effect may be related to the LOX-1-mediated increase in DNA methylation.[Abstract] [Full Text] [Related] [New Search]