These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The marine sponge toxin agelasine B increases the intracellular Ca(2+) concentration and induces apoptosis in human breast cancer cells (MCF-7).
    Author: Pimentel AA, Felibertt P, Sojo F, Colman L, Mayora A, Silva ML, Rojas H, Dipolo R, Suarez AI, Compagnone RS, Arvelo F, Galindo-Castro I, De Sanctis JB, Chirino P, Benaim G.
    Journal: Cancer Chemother Pharmacol; 2012 Jan; 69(1):71-83. PubMed ID: 21603866.
    Abstract:
    PURPOSE: In search for new drugs derived from natural products for the possible treatment of cancer, we studied the action of agelasine B, a compound purified from a marine sponge Agelas clathrodes. METHODS: Agelasine B was purified from a marine sponge Agelas clathrodes and assayed for cytotoxicity by MTT on two human breast cancer cells (MCF-7 and SKBr3), on a prostate cancer cells (PC-3) and on human fibroblasts. Changes in the intracellular Ca(2+) concentrations were assessed with FURA 2 and by confocal microscopy. Determination of Ca(2+)-ATPase activity was followed by Pi measurements. Changes in the mitochondria electrochemical potential was followed with Rhodamine 123. Apoptosis and DNA fragmentation were determined by TUNEL experiments. RESULTS: Upon agelasine B treatment, cell viability of both human breast cancer cell lines was one order of magnitude lower as compared with fibroblasts (IC(50) for MCF-7 = 2.99 μM; SKBr3: IC(50) = 3.22 μM vs. fibroblasts: IC(50) = 32.91 μM), while the IC(50) for PC-3 IC(50) = 6.86 μM. Agelasine B induced a large increase in the intracellular Ca(2+) concentration in MCF-7, SKBr3, and PC-3 cells. By the use of confocal microscopy coupled to a perfusion system, we could observe that this toxin releases Ca(2+) from the endoplasmic reticulum (ER). We also demonstrated that agelasine B produces a potent inhibition of the ER Ca(2+)-ATPase (SERCA), and that this compound induced the fragmentation of DNA. Accordingly, agelasine B reduced the expression of the anti-apoptotic protein Bcl-2 and was able to activate caspase 8, without affecting the activity of caspase 7. CONCLUSIONS: Agelasine B in MCF-7 cells induce the activation of apoptosis in response to a sustained increase in the [Ca(2+)]( i ) after blocking the SERCA activity. The reproduction of the effects of agelasine B on cell viability and on the [Ca(2+)]( I ) obtained on SKBr3 and PC-3 cancer cells strongly suggests the generality of the mechanism of action of this toxin.
    [Abstract] [Full Text] [Related] [New Search]