These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computed tomography to estimate cardiac preload and extravascular lung water. A retrospective analysis in critically ill patients. Author: Saugel B, Holzapfel K, Stollfuss J, Schuster T, Phillip V, Schultheiss C, Schmid RM, Huber W. Journal: Scand J Trauma Resusc Emerg Med; 2011 May 23; 19():31. PubMed ID: 21605380. Abstract: BACKGROUND: In critically ill patients intravascular volume status and pulmonary edema need to be quantified as soon as possible. Many critically ill patients undergo a computed tomography (CT)-scan of the thorax after admission to the intensive care unit (ICU). This study investigates whether CT-based estimation of cardiac preload and pulmonary hydration can accurately assess volume status and can contribute to an early estimation of hemodynamics. METHODS: Thirty medical ICU patients. Global end-diastolic volume index (GEDVI) and extravascular lung water index (EVLWI) were assessed using transpulmonary thermodilution (TPTD) serving as reference method (with established GEDVI/EVLWI normal values). Central venous pressure (CVP) was determined. CT-based estimation of GEDVI/EVLWI/CVP by two different radiologists (R1, R2) without analyzing software. Primary endpoint: predictive capabilities of CT-based estimation of GEDVI/EVLWI/CVP compared to TPTD and measured CVP. Secondary endpoint: interobserver correlation and agreement between R1 and R2. RESULTS: Accuracy of CT-estimation of GEDVI (< 680, 680-800, > 800 mL/m2) was 33%(R1)/27%(R2). For R1 and R2 sensitivity for diagnosis of low GEDVI (< 680 mL/m2) was 0% (specificity 100%). Sensitivity for prediction of elevated GEDVI (> 800 mL/m2) was 86%(R1)/57%(R2) with a specificity of 57%(R1)/39%(R2) (positive predictive value 38%(R1)/22%(R2); negative predictive value 93%(R1)/75%(R2)). Estimated CT-GEDVI and TPTD-GEDVI were significantly different showing an overestimation of GEDVI by the radiologists (R1: mean difference ± standard error (SE): 191 ± 30 mL/m2, p < 0.001; R2: mean difference ± SE: 215 ± 37 mL/m2, p < 0.001). CT GEDVI and TPTD-GEDVI showed a very low Lin-concordance correlation coefficient (ccc) (R1: ccc = +0.20, 95% CI: +0.00 to +0.38, bias-correction factor (BCF) = 0.52; R2: ccc = -0.03, 95% CI: -0.19 to +0.12, BCF = 0.42). Accuracy of CT estimation in prediction of EVLWI (< 7, 7-10, > 10 mL/kg) was 30% for R1 and 40% for R2. CT-EVLWI and TPTD-EVLWI were significantly different (R1: mean difference ± SE: 3.3 ± 1.2 mL/kg, p = 0.013; R2: mean difference ± SE: 2.8 ± 1.1 mL/kg, p = 0.021). Again ccc was low with -0.02 (R1; 95% CI: -0.20 to +0.13, BCF = 0.44) and +0.14 (R2; 95% CI: -0.05 to +0.32, BCF = 0.53). GEDVI, EVLWI and CVP estimations of R1 and R2 showed a poor interobserver correlation (low ccc) and poor interobserver agreement (low kappa-values). CONCLUSIONS: CT-based estimation of GEDVI/EVLWI is not accurate for predicting cardiac preload and extravascular lung water in critically ill patients when compared to invasive TPTD-assessment of these variables.[Abstract] [Full Text] [Related] [New Search]