These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: X-ray properties of an anthropomorphic breast phantom for MRI and x-ray imaging.
    Author: Freed M, Badal A, Jennings RJ, de las Heras H, Myers KJ, Badano A.
    Journal: Phys Med Biol; 2011 Jun 21; 56(12):3513-33. PubMed ID: 21606556.
    Abstract:
    The purpose of this study is to characterize the x-ray properties of a dual-modality, anthropomorphic breast phantom whose MRI properties have been previously evaluated. The goal of this phantom is to provide a platform for optimization and standardization of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and discrimination. The phantom is constructed using a mixture of lard and egg whites, resulting in a variable, tissue-mimicking structure with separate adipose- and glandular-mimicking components. The phantom can be produced with either a compressed or uncompressed shape. Mass attenuation coefficients of the phantom materials were estimated using elemental compositions from the USDA National Nutrient Database for Standard Reference and the atomic interaction models from the Monte Carlo code PENELOPE and compared with human values from the literature. The image structure was examined quantitatively by calculating and comparing spatial covariance matrices of the phantom and patient mammography images. Finally, a computerized version of the phantom was created by segmenting a computed tomography scan and used to simulate x-ray scatter of the phantom in a mammography geometry. Mass attenuation coefficients of the phantom materials were within 20% and 15% of the values for adipose and glandular tissues, respectively, which is within the estimation error of these values. Matching was improved at higher energies (>20 keV). Tissue structures in the phantom have a size similar to those in the patient data, but are slightly larger on average. Correlations in the patient data appear to be longer than those in the phantom data in the anterior-posterior direction; however, they are within the error bars of the measurement. Simulated scatter-to-primary ratio values of the phantom images were as high as 85% in some areas and were strongly affected by the heterogeneous nature of the phantom. Key physical x-ray properties of the phantom have been quantitatively evaluated and shown to be comparable to those of breast tissue. Since the MRI properties of the phantom have been previously evaluated, we believe it is a useful tool for quantitative evaluation of two- and three-dimensional x-ray and MRI breast imaging modalities for the purpose of lesion detection and characterization.
    [Abstract] [Full Text] [Related] [New Search]