These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of biomarkers of chemically induced hepatocarcinogenesis in rasH2 mice by toxicogenomic analysis. Author: Park HJ, Oh JH, Park SM, Cho JW, Yum YN, Park SN, Yoon DY, Yoon S. Journal: Arch Toxicol; 2011 Dec; 85(12):1627-40. PubMed ID: 21607683. Abstract: Toxicogenomic approaches have been applied to chemical-induced heptocarcinogenesis rodent models for the identification of biomarkers of early-stage hepatocarcinogenesis and to help clarify the underlying carcinogenic mechanisms in the liver. In this study, we used toxiciogenomic methods to identify candidate biomarker genes associated with hepatocarcinogenesis in rasH2 mice. Blood chemical, histopathologic, and gene expression analyses of the livers of rasH2 mice were performed 7 and 91 days after the administration of the genotoxic hepatocarcinogens 2-acetylaminofluorene (AAF) and diethylnitrosoamine (DEN), the genotoxic carcinogen melphalan (Mel), and the nongenotoxic noncarcinogen 1-naphthylisothiocynate (ANIT). Histopathologic lesions and a rise in accompanying serum marker levels were found in the DEN-treated rasH2 mice, whereas no neoplastic lesions were observed in the rasH2 mice. However, biological functional analysis using Ingenuity Pathways Analysis (IPA) software revealed that genes with comparable molecular and cellular functions were similarly deregulated in the AAF- and DEN-treated rasH2 mice. We selected 68 significantly deregulated genes that represented a hepatocarcinogen-specific signature; these genes were commonly deregulated in both the AAF- and DEN-treated rasH2 mice on days 7 and 91. Hierarchical clustering analysis indicated that the expression patterns of the selected genes in the hepatocarcinogen (AAF and DEN) groups were distinctive from the patterns in the control, Mel, and ANIT groups. Biomarker filter analysis using IPA software suggested that 28 of the 68 signature genes represent promising candidate biomarkers of cancer. Quantitative real-time PCR analysis confirmed that the deregulated genes, which exhibited sustained up- and down-regulation up to day 91, are likely involved in early-stage hepatocarcinogenesis. In summary, the common and significant gene expression changes induced by AAF and DEN may reflect early molecular events associated with hepatocarcinogenesis, and these "signature" genes may be useful as biomarkers of hepatocarcinogenesis in mice.[Abstract] [Full Text] [Related] [New Search]