These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased leukotriene E4 excretion during antigen-induced bronchoconstriction in allergic sheep. Author: Tagari P, Abraham WM, McGolrick J, Charleson S, Soler M, Ahmed A, Cortez A, Ford-Hutchinson AW. Journal: J Appl Physiol (1985); 1990 Apr; 68(4):1321-7. PubMed ID: 2161409. Abstract: The metabolism of leukotrienes (LT) in the sheep was investigated to define markers of 5-lipoxygenase involvement in allergic responses, obtainable by noninvasive techniques. Intravenous administration of 14, 15-[3H]LTC4 (0.5 microCi/kg) revealed a rapid clearance from the circulation (half time = 90 s). Circulatory metabolism was apparent, with early formation (within 1 min) of LTD4 and LTE4 shown by reverse-phase high-pressure liquid chromatography (RP-HPLC). Urinary 3H excretion comprised 10% of the original dose. [3H]LTE4 (characterized by coelution with authentic standards during RP-HPLC analysis) was observed in early urine samples. By use of a sensitive and specific RP-HPLC radioimmunoassay analysis, immunoreactive material coeluting with LTE4 was detected in urine from allergic sheep. Excretion of this material was significantly increased during antigen-induced acute bronchoconstriction in eight conscious allergic sheep [preantigen, 65.70 +/- 24.27 (SE) pg; 0-1 h postantigen, 208.00 +/- 71.10 pg, P less than 0.05], but not during late responses. However, total postantigen LTE4 excretion (37.8 - 956.1 pg/8 h) was highly correlated (r = 0.976, P less than 0.001) with the severity of bronchoconstriction (445.3 - 2,409.1% specific pulmonary resistance per hour) assessed by measurement of the area under the curve of pulmonary function plotted against time. These findings represent an important demonstration of in vivo allergen-induced peptide LT generation in a physiologically characterized animal model of prolonged allergic bronchoconstriction and further substantiate an important role for LT in this model of allergic asthma.[Abstract] [Full Text] [Related] [New Search]