These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolite identification of a radiotracer by electrochemistry coupled to liquid chromatography with mass spectrometric and radioactivity detection. Author: Baumann A, Faust A, Law MP, Kuhlmann MT, Kopka K, Schäfers M, Karst U. Journal: Anal Chem; 2011 Jul 01; 83(13):5415-21. PubMed ID: 21615156. Abstract: Radioligands, which specifically bind to a receptor or enzyme (target), enable molecular imaging of the target expression by positron emission tomography (PET). One very promising PET tracer is (S)-1-(4-(2-[(18)F]-fluoroethoxy)benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin (isatin), a caspase-3 inhibitor, which has been developed at the University Hospital of Münster to image cell death (apoptosis). The translation of this novel tracer from preclinical evaluation to clinical examinations requires biodistribution studies, which characterize the pharmakodynamics and metabolic fate of the compound. This information is used to further optimize the radioligands and to interpret radioactive signals from tissues upon injection of the radioligand in vivo with respect to their specificity. The analysis of the metabolism of radioligands is hampered by the low amount of the compound being typically injected (nano/picomolar amount per injection). In the present study, electrochemistry (EC) is applied to elucidate the oxidative metabolism pathway of the radiotracer. Previous studies have demonstrated that EC can be utilized as a complementary tool to conventional in vitro approaches in drug metabolism studies. Thereby, potential oxidative metabolites of the isatin are determined by EC coupled to electrospray ionization mass spectrometry (EC/ESI-MS). Moreover, using EC/liquid chromatography (LC) and ESI-ion trap MS(n), structural elucidation of the oxidation products is performed. Comparatively to EC, in vitro metabolism studies with rat liver microsomes are conducted. Finally, the developed LC/ESI-MS method is applied to determine metabolites in body fluids and cell extracts from in vivo studies with the nonradioactive ((19)F) and radioactive isatin ((18)F). On the basis of the electrochemically generated oxidation products of the radioligand, the major radioactive metabolite occurring in vivo was successfully identified.[Abstract] [Full Text] [Related] [New Search]