These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Highly efficient visible light TiO2 photocatalyst prepared by sol-gel method at temperatures lower than 300°C.
    Author: Wang D, Xiao L, Luo Q, Li X, An J, Duan Y.
    Journal: J Hazard Mater; 2011 Aug 15; 192(1):150-9. PubMed ID: 21616590.
    Abstract:
    Highly efficient visible light TiO(2) photocatalyst was prepared by the sol-gel method at lower temperature (≤ 300°C), and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and differential scanning calorimetry-thermogravimetric analysis (DSC-TGA). The effects of the heat treatment temperature and time of the as-prepared TiO(2) on its visible light photocatalytic activity were investigated by monitoring the degradation of methyl orange solution under visible light irradiation (wavelength ≥ 400 nm). Results show that the as-prepared TiO(2) nanoparticles possess an anatase phase and mesoporous structure with carbon self-doping and visible photosensitive organic groups. The visible light photocatalytic activity of the as-prepared TiO(2) is greatly higher than those of the commercial TiO(2) (P-25) and other visible photocatalysts reported in literature (such as PPy/TiO(2), P3HT/TiO(2), PANI/TiO(2), N-TiO(2) and Fe(3+)-TiO(2)) and its photocatalytic stability is excellent. The reasons for improving the visible light photocatalytic activity of the as-prepared TiO(2) can be explained by carbon self-doping and a large amount of visible photosensitive groups existing in the as-prepared TiO(2). The apparent optical thickness (τ(app)), local volumetric rate of photo absorption (LVRPA) and kinetic constant (k(T)) of the photodegradation system were calculated.
    [Abstract] [Full Text] [Related] [New Search]