These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Homogeneous detection of concanavalin A using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer.
    Author: Chen Q, Wei W, Lin JM.
    Journal: Biosens Bioelectron; 2011 Jul 15; 26(11):4497-502. PubMed ID: 21621405.
    Abstract:
    In this work, we proposed a novel biosensor to homogeneously detect concanavalin A (ConA) using pyrene-conjugated maltose assembled graphene based on fluorescence resonance energy transfer (FRET). Maltose-grafted-aminopyrene (Mal-Apy) was synthesized and characterized by mass spectra, UV-vis and fluorescence spectra. The Mal-Apy was further employed for fluorescence switch and ConA recognition. When Mal-Apy was self-assembled on the surface of graphene by means of π-stacking interaction, its fluorescence was adequately quenched because the graphene acted as a "nanoquencher" of the pyrene rings due to FRET. As a result, in the presence of ConA, competitive binding of ConA with glucose destroyed the π-stacking interaction between the pyrene and graphene, thereby causing the fluorescence recovery. This method was demonstrated the selective sensing of ConA, and the linear range is 2.0 × 10⁻² to 1.0 μM with the linear equation y=1.029x + 0.284 (R = 0.996). The limit of detection for ConA was low to 0.8 nM, and the detection of ConA could be performed in 5 min, indicating that this method could be used for fast, sensitive, and selective sensing of ConA. Such data suggests that the graphene FRET platform is a great potential application for protein-carbohydrate studies, and would be widely applied in drug screening, bimolecular recognition and disease diagnosis.
    [Abstract] [Full Text] [Related] [New Search]