These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Small interfering RNA delivery mediated by mPEG-PCL-g-PEI polymer nanoparticles].
    Author: Huang W, Lü M, Gao ZG, Jin MJ, Yang CQ.
    Journal: Yao Xue Xue Bao; 2011 Mar; 46(3):344-9. PubMed ID: 21626792.
    Abstract:
    The aim of this paper is to report the synthesis of the mPEG-PCL-g-PEI copolymers as small interfering RNA (siRNA) delivery vector, and exploration of the siRNA delivery potential of mPEG-PCL-g-PEI in vitro. The diblock copolymers mPEG-PCL-OH was prepared through the ring-opening polymerization. Then, the hydroxyl terminal (-OH) of mPEG-PCL-OH was chemically converted into the carboxy (-COOH) and N-hydroxysuccinimide (NHS) in turn to prepare mPEG-PCL-NHS. The branched PEI was reacted with mPEG-PCL-NHS to synthesize the ternary copolymers mPEG-PCL-g-PEI. The structure of mPEG-PCL-g-PEI copolymers was characterized with Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The mPEG-PCL-g-PEI/siRNA nanoparticles were prepared by complex coacervation, and the nanoparticles size and zeta potential were determined, separately. The cytotoxicities of mPEG-PCL-g-PEI/siRNA nanoparticles and PEI/siRNA nanoparticles were compared through cells MTT assays in vitro. The inhibition efficiencies of firefly luciferase gene expression by mPEG-PCL-g-PEI/ siRNA nanoparticle at various N/P ratios were investigated through cell transfection in vitro. The experimental results suggested that the ternary (mPEG5k-PCL(1.2k))1.4-g-PEI(10k) copolymers were successfully synthesized. (mPEG(5k)-PCL(1.2k))1.4-g-PEI(10k) could condense siRNA into nanoparticles (50-200 nm) with positive zeta potential. MTT assay results showed that the cytotoxicity of (mPEG(5k)-PCL(1.2k))1.4-g-PEI(10k)/siRNA nanoparticles was significantly lower than that of PEI(10k)/siRNA nanoparticles (P < 0.05). The expression of firefly luciferase gene could be significantly down-regulated at a range of N/P ratio from 50 to 150 (P < 0.01), and maximally inhibited at the N/P ratio of 125. The mPEG-PCL-g-PEI polymers could delivery siRNA into cells to inhibit the expression of target gene with very low cytotoxicity, which suggested that mPEG-PCL-g-PEI could serve as a new type of siRNA delivery vector.
    [Abstract] [Full Text] [Related] [New Search]