These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Topical prolyl hydroxylase domain-2 silencing improves diabetic murine wound closure.
    Author: Wetterau M, George F, Weinstein A, Nguyen PD, Tutela JP, Knobel D, Cohen Ba O, Warren SM, Saadeh PB.
    Journal: Wound Repair Regen; 2011; 19(4):481-6. PubMed ID: 21627711.
    Abstract:
    Prolyl hydroxylase domain 2 (PHD2) has been implicated in several pathways of cell signaling, most notably in its regulation of hypoxia-inducible factor (HIF)-1α stability. In normoxia, PHD2 hydroxylates proline residues on HIF-1α, rendering it inactive. However, in hypoxia, PHD2 is inactive, HIF-1α is stabilized and downstream effectors such as vascular endothelial growth factor and fibroblast growth factor-2 are produced to promote angiogenesis. In the present study we utilize RNA interference to PHD2 to promote therapeutic angiogenesis in a diabetic wound model, presumably by the stabilization of HIF-1α. Stented wounds were created on the dorsum of diabetic Lepr db/db mice. Mice were treated with PHD2 small interfering RNA (siRNA) or nonsense siRNA. Wounds were measured photometrically on days 0-28. Wounds were harvested for histology, protein, and RNA analysis. Diabetic wounds treated with siRNA closed within 21±1.2 days; sham-treated closed in 28±1.5 days. By day 7, Western blot revealed near complete suppression of PHD protein and corresponding increased HIF-1α. Angiogenic mediators vascular endothelial growth factor and fibroblast growth factor-2 were elevated, corresponding to increased CD31 staining in the treated groups. siRNA-mediated silencing of PHD2 increases HIF-1α and several mediators of angiogenesis. This corresponded to improved time to closure in diabetic wounds compared with sham-treated wounds. These findings suggest that impaired wound healing in diabetes can be ameliorated with therapeutic angiogenesis.
    [Abstract] [Full Text] [Related] [New Search]