These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of 1-Hz repetitive transcranial magnetic stimulation on long-latency reflexes and cortical relay time. Author: Tataroglu C, Sair A, Parlaz A, Deneri E. Journal: J Clin Neurophysiol; 2011 Jun; 28(3):319-22. PubMed ID: 21633260. Abstract: Long-latency reflexes (LLRs) of hand muscles include a transcortical component. Cortical relay time estimated by the subtraction of motor and somatosensory evoked potentials from LLR reflects the physiology of the central neural pathway of LLR. It is believed that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex can decrease cortical excitability for approximately 15 minutes at intracortical level. The aim of the study was to analyze LLR and cortical relay time before and after 1-Hz rTMS. Long-latency reflex and H reflex obtained from the thenar muscles by electrical stimulation of the median nerve of 16 healthy subjects. Additionally, motor evoked potentials and somatosensory evoked potentials were also recorded. Cortical relay time was calculated by the subtraction of motor evoked potential and somatosensory evoked potential latencies from LLR. These electrophysiologic recordings were performed before and after 15 minutes of 1-Hz rTMS over the motor area for the thenar muscles in the primary motor cortex. The amplitudes of LLR and motor evoked potential were significantly decreased after rTMS, but the H reflex of the thenar muscle and somatosensory evoked potentials were unchanged. The major finding of our study was a shortened duration of cortical relay time after rTMS. In conclusion, our findings suggest that the LLR of the thenar muscles has a transcortical pathway and cortical relay time that can give some information about the physiology of the intracortical pathway of LLR.[Abstract] [Full Text] [Related] [New Search]