These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: FLIP (Flice-like inhibitory protein) suppresses cytoplasmic double-stranded-RNA-induced apoptosis and NF-κB and IRF3-mediated signaling.
    Author: Handa P, Tupper JC, Jordan KC, Harlan JM.
    Journal: Cell Commun Signal; 2011 Jun 02; 9():16. PubMed ID: 21635783.
    Abstract:
    BACKGROUND: Cytoplasmic viral double-stranded RNA (dsRNA) is detected by a class of ubiquitous cytoplasmic RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation antigen-5 (MDA5), which initiate a signaling cascade via their common adaptor called interferon-β (IFN-β) promoter stimulator-1 (IPS-1). This leads to the production of proinflammatory and antiviral cytokines, the type I Interferons, via mainly nuclear factor kappa B (NF-κB) and interferon response factor-3 (IRF3) transcription factors. Fas-associated death domain (FADD) protein, receptor-interacting protein (RIP1), caspase-8 and tumor necrosis factor receptor (TNFR)-associated death domain (TRADD) protein, all traditionally associated with death receptor signaling, are also involved in RIG-I/MDA5 signaling pathway. We previously showed that FLIP (Flice-like inhibitory protein), also designated as cflar (CASP8 and FADD-like apoptosis regulator), negatively regulates lipopolysaccharide (LPS)-induced toll-like receptor 4 (TLR4) signaling in endothelial cells and mouse embryonic fibroblasts (MEFs) and protected against TLR4-mediated apoptosis. RESULTS: In this study, we investigated the role of FLIP in cellular response to cytoplasmic polyinosinic:polycytidylic acid, poly(I:C), a synthetic analog of dsRNA. Consistent with the previously described role of FADD in RIG-I/MDA5-mediated apoptosis, we found that FLIP-/- MEFs were more susceptible to killing by cytoplasmic poly(I:C). However, FLIP-/- MEFs also exhibited markedly increased expression of NF-κB-and IRF3- dependent genes in response to cytoplasmic poly(I:C). Importantly, reconstitution of FLIP in FLIP-/-MEFs reversed the hyper-activation of IRF3- and NF-κB-mediated gene expression. Further, we found that caspase-8 catalytic activity was not required for cytoplasmic poly(I:C)-mediated NF-κB and IRF3 signaling. CONCLUSIONS: These results provide evidence for a crucial dual role for FLIP in antiviral responses to cytoplasmic dsRNA: it protects from cytoplasmic dsRNA-mediated cell death while down-regulating IRF3-and NF-κB-mediated gene expression. Since the pathogenesis of several viral infections involves a heightened and dysregulated cytokine response, a possible therapy could involve modulating FLIP levels.
    [Abstract] [Full Text] [Related] [New Search]