These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Increased palmitoyl-myristoyl-phosphatidylcholine in neonatal rat surfactant is lung specific and correlates with oral myristic acid supply. Author: Bernhard W, Raith M, Pynn CJ, Gille C, Stichtenoth G, Stoll D, Schleicher E, Poets CF. Journal: J Appl Physiol (1985); 2011 Aug; 111(2):449-57. PubMed ID: 21636561. Abstract: Surfactant predominantly comprises phosphatidylcholine (PC) species, together with phosphatidylglycerols, phosphatidylinositols, neutral lipids, and surfactant proteins-A to -D. Together, dipalmitoyl-PC (PC16:0/16:0), palmitoyl-myristoyl-PC (PC16:0/14:0), and palmitoyl-palmitoleoyl-PC (PC16:0/16:1) make up 75-80% of mammalian surfactant PC, the proportions of which vary during development and in chronic lung diseases. PC16:0/14:0, which exerts specific effects on macrophage differentiation in vitro, increases in surfactant during alveolarization (at the expense of PC16:0/16:0), a prenatal event in humans but postnatal in rats. The mechanisms responsible and the significance of this reversible increase are, however, not understood. We hypothesized that, in rats, myristic acid (C14:0) enriched milk is key to lung-specific PC16:0/14:0 increases in surfactant. We found that surfactant PC16:0/14:0 in suckling rats correlates with C14:0 concentration in plasma chylomicrons and lung tissue triglycerides, and that PC16:0/14:0 fractions reflect exogenous C14:0 supply. Significantly, C14:0 was increased neither in plasma PC, nor in liver triglycerides, free fatty acids, or PC. Lauric acid was also abundant in triglycerides, but was not incorporated into surfactant PC. Comparing a C14:0-rich milk diet with a C14:0-poor carbohydrate diet revealed increased C14:0 and decreased C16:0 in plasma and lung triglycerides, respectively. PC16:0/14:0 enrichment at the expense of PC16:0/16:0 did not impair surfactant surface tension function. However, the PC profile of the alveolar macrophages from the milk-fed animals changed from PC16:0/16:0 rich to PC16:0/14:0 rich. This was accompanied by reduced reactive oxygen species production. We propose that nutritional supply with C14:0 and its lung-specific enrichment may contribute to decreased reactive oxygen species production during alveolarization.[Abstract] [Full Text] [Related] [New Search]