These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: a novel route for the fabrication of an oxygen sensor and a glucose biosensor. Author: Haghighi B, Bozorgzadeh S. Journal: Anal Chim Acta; 2011 Jul 04; 697(1-2):90-7. PubMed ID: 21641423. Abstract: Incorporation of palladium nanoparticles on the surface of multi-walled carbon nanotubes and modification of glassy carbon electrode with the prepared nano-hybrid material led to the fabrication of a novel electrode. The modified electrode showed attractive electrocatalytic activity and sensitizing effect on luminol-O(2) and luminol-H(2)O(2) electrochemiluminescence (ECL) reactions at neutral media. The sensitized luminol-O(2) and luminol-H(2)O(2) reactions were successfully applied for the ECL determination of dissolved O(2) and glucose, respectively. Under the optimal conditions for luminol-O(2) system, the ECL signal intensity of luminol was linear with the concentration of dissolved oxygen in the range between 0.08 and 0.94 mM (r=0.9996) and for luminol-H(2)O(2) system, the ECL signal intensity of luminol was linear with the concentration of glucose in the range between 0.1 and 1000 μM (r=0.9998). The limits of detection (S/N=3) for dissolved oxygen and glucose were 0.02 mM and 54 nM, respectively. The relative standard deviations (RSD) for repetitive measurements of 0.50 mM oxygen (n=10) and 10 μM glucose (n=30) were 3.5% and 0.3%, respectively. Also, under the optimal conditions for luminol-H(2)O(2) system, the ECL signal intensity of luminol was linear with the concentration of H(2)O(2) in the range between 1 nM and 0.45 mM (r=0.9997). The limit of detection (S/N=3) for H(2)O(2) detection was 0.5 nM and the relative standard deviation for repetitive measurements of 10 μM H(2)O(2) (n=10) was 0.8%.[Abstract] [Full Text] [Related] [New Search]