These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Multitargeted receptor tyrosine kinase inhibition: an antiangiogenic strategy in non-small cell lung cancer.
    Author: Socinski MA.
    Journal: Cancer Treat Rev; 2011 Dec; 37(8):611-7. PubMed ID: 21641723.
    Abstract:
    In the United States, the leading cause of cancer-related deaths is lung cancer, of which more than 85% of cases are categorized as non-small cell lung cancer. The process of angiogenesis, which results in the formation of vasculature, is a complex and coordinated process that is required for cancer growth and metastasis. Pathways that promote angiogenesis have been targeted as a therapeutic approach in multiple types of cancer, including non-small cell lung cancer. Of these, the vascular endothelial growth factor pathway has been the most well studied, but more recently, the platelet-derived growth factor and fibroblast growth factor pathways have been identified as regulators of angiogenesis and potential mediators of resistance to vascular endothelial growth factor inhibition. Bevacizumab, a monoclonal antibody that binds to vascular endothelial growth factor, is currently the only antiangiogenic drug approved for the treatment of non-small cell lung cancer; however, several tyrosine kinase inhibitors that target vascular endothelial growth factor receptors as well as platelet-derived growth factor receptors and/or fibroblast growth factor receptors are being developed. This article reviews the role of the fibroblast growth factor and platelet-derived growth factor pathways in angiogenesis and provides a summary of dual (e.g., sorafenib, sunitinib) and triple (e.g., BIBF 1120, pazopanib) antiangiogenic tyrosine kinase inhibitors currently in development for the treatment of non-small cell lung cancer.
    [Abstract] [Full Text] [Related] [New Search]