These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural and spectroscopic characterization of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid with experimental techniques and quantum chemical calculations. Author: Karabacak M, Cinar Z, Cinar M. Journal: Spectrochim Acta A Mol Biomol Spectrosc; 2011 Sep; 79(5):1511-9. PubMed ID: 21646044. Abstract: In this study, the molecular conformation, vibrational and electronic transition analysis of 2,3-difluorobenzoic acid and 2,4-difluorobenzoic acid (C7H4F2O2) were presented using experimental techniques (FT-IR, FT-Raman and UV) and quantum chemical calculations. FT-IR and FT-Raman spectra in solid state were recorded in the region 4000-400 cm(-1) and 4000-5 cm(-1), respectively. The UV absorption spectra of the compounds that dissolved in ethanol were recorded in the range of 200-800 nm. The structural properties of the molecules in the ground state were calculated using density functional theory (DFT) and second order Møller-Plesset perturbation theory (MP2) employing 6-311++G(d,p) basis set. Optimized structure of compounds was interpreted and compared with the earlier reported experimental values. The scaled vibrational wavenumbers were compared with experimental results. The complete assignments were performed on the basis of the experimental data and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. A study on the electronic properties, such as absorption wavelength, excitation energy, dipole moment and frontier molecular orbital energy, were performed by time dependent DFT (TD-DFT) approach. Based on the UV spectra and TD-DFT calculations, the electronic structure and the assignments of the absorption bands of steady compounds were discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecules.[Abstract] [Full Text] [Related] [New Search]