These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells. Author: Call DF, Logan BE. Journal: Biosens Bioelectron; 2011 Jul 15; 26(11):4526-31. PubMed ID: 21652198. Abstract: There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical research using multiple inexpensive microbial electrolysis cells (MECs) built with commercially available materials and operated using a single power source. MECs were small crimp top serum bottles (5 mL) with a graphite plate anode (92 m²/m(3)) and a cathode of stainless steel (SS) mesh (86 m²/m³), graphite plate, SS wire, or platinum wire. The highest volumetric current density (240 A/m³, applied potential of 0.7 V) was obtained using a SS mesh cathode and a wastewater inoculum (acetate electron donor). Parallel operated MECs (single power source) did not lead to differences in performance compared to non-parallel operated MECs, which can allow for high throughput reactor operation (>1000 reactors) using a single power supply. The utility of this method for cultivating exoelectrogenic microorganisms was demonstrated through comparison of buffer effects on pure (Geobacter sulfurreducens and Geobacter metallireducens) and mixed cultures. Mixed cultures produced current densities equal to or higher than pure cultures in the different media, and current densities for all cultures were higher using a 50 mM phosphate buffer than a 30 mM bicarbonate buffer. Only the mixed culture was capable of sustained current generation with a 200 mM phosphate buffer. These results demonstrate the usefulness of this inexpensive method for conducting in-depth examinations of pure and mixed exoelectrogenic cultures.[Abstract] [Full Text] [Related] [New Search]