These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A homozygous missense mutation in SCNN1A is responsible for a transient neonatal form of pseudohypoaldosteronism type 1.
    Author: Dirlewanger M, Huser D, Zennaro MC, Girardin E, Schild L, Schwitzgebel VM.
    Journal: Am J Physiol Endocrinol Metab; 2011 Sep; 301(3):E467-73. PubMed ID: 21653223.
    Abstract:
    Pseudohypoaldosteronism type 1 (PHA1) is a monogenic disorder of mineralocorticoid resistance characterized by salt wasting, hyperkalemia, high aldosterone levels, and failure to thrive. An autosomal recessive form (AR-PHA1) is caused by mutations in the epithelial sodium channel ENaC with usually severe and persisting multiorgan symptoms. The autosomal dominant form of PHA1 (AD-PHA1) is due to mutations in the mineralocorticoid receptor causing milder and transient symptoms restricted to the kidney. We identified a homozygous missense mutation in the SCNN1A gene (c.727T>C/p.Ser(243)Pro), encoding α-subunit of ENaC (α-ENaC) in a prematurely born boy with a severe salt-losing syndrome. The patient improved rapidly under treatment, and dietary salt supplementation could be stopped after 6 mo. Interestingly, the patient's sibling born at term and harboring the same homozygous Ser(243)Pro mutation showed no symptom of salt-losing nephropathy. In vitro expression of the αSer(243)Pro ENaC mutant revealed a slight but significant decrease in ENaC activity that is exacerbated in the presence of high Na(+) load. Our study provides the first evidence that ENaC activity is critical for the maintenance of salt balance in the immature kidney of preterm babies. Together with previous studies, it shows that, when the kidney is fully mature, the severity of the symptoms of AR-PHA1 is related to the degree of the ENaC loss of function. Finally, this study identifies a novel functional domain in the extracellular loop of ENaC.
    [Abstract] [Full Text] [Related] [New Search]