These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased serum and bone matrix levels of transforming growth factor {beta}1 in patients with GH deficiency in response to GH treatment.
    Author: Ueland T, Lekva T, Otterdal K, Dahl TB, Olarescu NC, Jørgensen AP, Fougner KJ, Brixen K, Aukrust P, Bollerslev J.
    Journal: Eur J Endocrinol; 2011 Sep; 165(3):393-400. PubMed ID: 21653735.
    Abstract:
    OBJECTIVE: Patients with adult onset GH deficiency (aoGHD) have secondary osteoporosis, which is reversed by long-term GH substitution. Transforming growth factor β1 (TGFβ1 or TGFB1) is abundant in bone tissue and could mediate some effects of GH/IGFs on bone. We investigated its regulation by GH/IGF1 in vivo and in vitro. DESIGN AND METHODS: The effects of GH substitution (9-12 months, placebo controlled) on circulating and cortical bone matrix contents of TGFβ1 were investigated in patients with aoGHD. The effects of GH/IGF1 on TGFβ1 secretion in osteoblasts (hFOB), adipocytes, and THP-1 macrophages as well as the effects on release from platelets were investigated in vitro. RESULTS: In vivo GH substitution increased TGFβ1 protein levels in cortical bone and serum. In vitro, GH/IGF1 stimulation induced a significant increase in TGFβ1 secretion in hFOB. In contrast, no major effect of GH/IGF1 on TGFβ1 was found in adipocytes and THP-1 macrophages. Finally, a minor modifying effect on SFLLRN-stimulated platelet release of TGFβ1 was observed in the presence of IGF1. CONCLUSION: GH substitution increases TGFβ1 in vivo and in vitro, and this effect could contribute to improved bone metabolism during such therapy, potentially reflecting direct effect of GH/IGF1 on bone cells.
    [Abstract] [Full Text] [Related] [New Search]