These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of kappa opiate receptors in rat spinal cord-dorsal root ganglion cocultures and their regulation by chronic opiate treatment.
    Author: Attali B, Vogel Z.
    Journal: Brain Res; 1990 May 28; 517(1-2):182-8. PubMed ID: 2165432.
    Abstract:
    We have investigated the expression and regulation of kappa opiate receptors in rat spinal cord-dorsal root ganglion primary cocultures. The density of opiate receptors increased markedly during the differentiation of the cultures; after 10 days in vitro the number of [3H]diprenorphine binding sites reached 244 +/- 47 fmol/mg protein. Most of the binding sites were of the kappa type, representing about 65-80% of total opiate receptors, while mu sites were expressed at a lower density (ca. 20% of total opiate sites). Following this period of development, the number of kappa and mu receptors did not change significantly. No detectable delta sites were observed at any time of culture (up to 4 weeks in vitro). Chronic opiate agonist treatment (24 h) of the cultured cells with either 10 microM U50488 (a selective kappa agonist), or 1 microM etorphine (a nonselective opiate agonist), did not change the number of kappa receptors and their binding affinity to [3H]diprenorphine. On the other hand, 50% of the mu receptor sites down-regulated following 24 h treatment with 1 microM etorphine. Chronic antagonist exposure (5 days) with 10 microM naloxone, markedly up-regulated the mu receptors (261% of control), whereas kappa sites exhibited a much weaker upregulation (164% of control). These data demonstrate that kappa opiate receptors are expressed at high concentration in spinal cord-dorsal root ganglion cocultures and that contrary to mu sites, kappa receptor density is less susceptible to modulation by chronic opiate treatment. The results also suggest that postreceptor components are important in regulating the kappa receptor function following prolonged opiate exposure.
    [Abstract] [Full Text] [Related] [New Search]