These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cytoskeletal dynamics in rabbit synovial fibroblasts: II. Reformation of stress fibers in cells rounded by treatment with collagenase-inducing agents.
    Author: Aggeler J.
    Journal: Cell Motil Cytoskeleton; 1990; 16(2):121-32. PubMed ID: 2165440.
    Abstract:
    Modulation of the synthesis and secretion of extracellular matrix proteins and matrix-degrading metalloproteases by rabbit synovial fibroblasts is an important model system for studying the control of tissue-specific gene expression. Induction of collagenase expression is correlated with changes in cell shape and actin filament distribution, but the role of the cellular cytoskeleton in the sustained synthesis and secretion of metalloproteases has not been closely examined. When cells were allowed to respread after rounding by trypsin or cytochalasin, two known metalloprotease inducers, reformation of stress fibers was observed within 2 h in the presence of serum. In the absence of serum, trypsin-treated cells did not respread substantially, even after 24 h in culture. In contrast, cytochalasin-treated cells recovered almost as rapidly in the absence as in the presence of serum, showing reformation of well-formed microfilament bundles within 30 min of drug removal, especially at the spreading cell edges. High resolution electron-microscopic views of detergent-extracted cytoskeletons confirmed the rapid rebundling of peripheral microfilaments. Acrylamide-treated cells fell between these two extremes, spreading slowly in the absence of serum, but almost as rapidly as cytochalasin-treated cells in its presence. Reestablishment of normal intermediate filament distribution generally lagged slightly behind actin for all treatments, and intermediate filaments always appeared to spread back into the cellular cytoplasm within the confines of the reforming peripheral microfilament bundles. No obvious interaction between these two cytoskeletal elements was observed after any treatment, and no specific role for intermediate filaments in modulating gene expression in these cells is suggested by these results. The serum dependence displayed after trypsin or acrylamide treatment may be due to the disturbances in fibronectin synthesis observed in these cells and is consistent with evidence that both induction and sustained expression of matrix-degrading metalloprotease may involve signals transduced through plasma membrane matrix receptors (integrins).
    [Abstract] [Full Text] [Related] [New Search]