These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Reprogramming induced pluripotent stem cells in the absence of c-Myc for differentiation into hepatocyte-like cells. Author: Li HY, Chien Y, Chen YJ, Chen SF, Chang YL, Chiang CH, Jeng SY, Chang CM, Wang ML, Chen LK, Hung SI, Huo TI, Lee SD, Chiou SH. Journal: Biomaterials; 2011 Sep; 32(26):5994-6005. PubMed ID: 21658760. Abstract: Induced pluripotent stem cells (iPSCs) with four reprogramming factors (Oct-4/Sox2/Klf-4/c-Myc) have been shown to differentiate into hepatic lineages. However, it was unclear whether obviation of the c-Myc oncogene in iPSCs affected hepatic differentiation or inhibited in vivo tumor formation. In this study, we demonstrated that iPSCs without c-Myc had the capacity to differentiate into hepatocyte-like cells (iPSC-Heps) with biological functions. As detected using planar-radionuclide imaging and Hoechst labeling assays, these iPSCs and iPSC-Heps tended to mobilize to the injured liver area in thioacetamide (TAA)-treated mice. Intravenous transplantation of both iPSCs and iPSC-Heps but not mouse embryonic fibroblasts (MEFs) reduced the hepatic necrotic area, improved liver functions, and rescued TAA-treated mice from lethal acute hepatic failure (AHF). In addition, microarray-based bioinformatics and quantitative RT-PCR showed high expression of antioxidant genes in iPSCs and iPSC-Heps compared to MEFs. In vivo and in vitro studies of NAC pretreatment confirmed that iPSCs and iPSC-Heps potentially suppressed ROS production and activated antioxidant enzymes in TAA-injured livers. Six months after transplantation in TAA-treated mice, tumor formation was not seen in non-c-Myc iPSC grafts. Therefore, reprogramming adult somatic cells without c-Myc may prevent oxidative stress-induced damage and provide a safer alternative for hepatic regeneration in AHF.[Abstract] [Full Text] [Related] [New Search]