These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Author: Zhang H, Fan X, Quan X, Chen S, Yu H. Journal: Environ Sci Technol; 2011 Jul 01; 45(13):5731-6. PubMed ID: 21663048. Abstract: Interfacing photocatalyst with graphene sheet gives rise to an extraordinary modification to the properties of the resulting hybrids. Graphene sheet grafted Ag@AgCl composite is fabricated by photoreducing AgCl/graphene oxide (GO) hybrids prepared by deposition-precipitation method. The microscopic analysis and Raman scattering reveal the direct interface between Ag nanocrystal and graphene sheet, which manipulates the electronic structures of Ag@AgCl. UV-vis absorption spectra of Ag@AgCl/reduced GO (RGO) hybrids exhibit strong absorbance in the visible region due to the surface plasmon resonance (SPR) absorption of Ag nanocrystal. In situ assembled Ag@AgCl/RGO plasmonic photocatalyst exhibits remarkable photocatalytic activity. Compared with bare Ag@AgCl nanoparticle, a 4-fold enhancement in the photodegradation rate toward rhodamine B is observed over Ag@AgCl/RGO hybrids under visible light irradiation. The large enhancement of photocatalytic activity was attributed to the effective charge transfer from plasmon-excited Ag nanocrystal to RGO, which suppress the charge recombination during photocatalytic process. This work could provide new insights into the fabrication of high performance plasmonic photocatalyst and facilitate their practical application in environmental issues.[Abstract] [Full Text] [Related] [New Search]