These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aldosterone regulation of sodium and potassium transport in the cortical collecting duct. Author: O'Neil RG. Journal: Semin Nephrol; 1990 Jul; 10(4):365-74. PubMed ID: 2166326. Abstract: The aldosterone-induced up-regulation of Na absorption and K secretion in the CCD is complex and involves the regulation of numerous transport proteins. Some aspects of the response may be species dependent. For example, stimulation of Na and K transport in the rabbit CCD involves a marked up-regulation in the apical cell membrane Na and K conductances, the basolateral cell membrane K conductance, and the basolateral membrane NaK-ATPase activity. In the rat CCD, aldosterone causes a similar up-regulation in the NaK-ATPase and the apical membrane Na conductance, but supposedly has little influence on the apical and basolateral membrane K conductances as evaluated by indirect methods. Furthermore, the marked hyperpolarization of the basolateral membrane with long-term aldosterone treatment in the rabbit CCD is blunted or absent in the rat CCD. Other differences between the CCD of these two species have been outlined. Nonetheless, the basic responses of the CCDs from the two species show similar trends. The actions of aldosterone in the CCD principal cell are summarized in Figure 5. The initial steps have been described previously. Aldosterone (A) diffuse across the cell membrane and binds to a cytoplasmic receptor (R). The receptor complex moves into the nucleus and binds to an acceptor site on chromatin, initiating transcription and the subsequent synthesis of a myriad of new proteins referred to as aldosterone-induced proteins (AIP). The initial observed action of aldosterone is an upregulation of the apical membrane Na conductance during the early phase, which occurs within 1 to 2 hours. The increase in Na conductance likely reflects activation of preexisting latent Na channels and not synthesis of new channels, although activation does require protein synthesis. The increased Na influx during the early phase presents a larger Na load to the Na pump, which is likely reflected as a modest transient increase in intracellular Na activity. Based on kinetic considerations alone, this should cause an increased transport turnover of the pump with a greater Na extrusion rate and K uptake rate. The stimulated Na influx also causes a modest depolarization of the apical membrane during the early phase, which when combined with the increased K uptake via the pump and an apparent modest elevation in the intracellular K activity, results in a more favorable gradient for K secretion (increased driving force) into the tubule lumen.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]