These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification and cloning of a selenophosphate synthetase (SPS) from tiger shrimp, Penaeus monodon, and its transcription in relation to molt stages and following pathogen infection. Author: Yeh MS, Huang CJ, Guo CH, Liu KF, Tsai IH, Cheng W. Journal: Dev Comp Immunol; 2012 Jan; 36(1):21-30. PubMed ID: 21664929. Abstract: Complementary (c)DNA encoding selenophosphate synthetase (SPS) messenger (m)RNA of the tiger shrimp Penaeus monodon, designated PmSPS, was obtained from the hepatopancreas by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE). The 1582-bp cDNA contained an open reading frame (ORF) of 1248 bp, a 103-bp 5'-untranslated region (UTR), and a 231-bp 3'-UTR, which contained a conserved selenocysteine insertion sequence (SECIS) element, a conventional polyadenylation signal, and a poly A tail. The molecular mass of the deduced amino acid (aa) sequence (416 aa) was 45.5 kDa with an estimated pI of 4.85. It contained a putative selenocysteine residue which was encoded by the unusual stop codon, (275)TGA(277), which formed at the active site with residues Sec(58) and Lys(61). A comparison of amino acid sequences showed that PmSPS was more closely related to invertebrate SPS1, such as those of Heliothis virescens and Drosophila melanogaster a and b. PmSPS cDNA was synthesized in all tested tissues, especially in the hepatopancreas. PmSPS in the hepatopancreas of shrimp significantly increased after an injection with either Photobacterium damsela or white spot syndrome virus (WSSV) in order to protect cells against damage from oxidation, and enhance the recycling of selenocysteine or selenium metabolism, indicating that PmSPS is involved in the disease-resistance response. The PmSPS expression by hemocytes significantly increased in stage C, and then gradually decreased until stage A, suggesting that the cloned PmSPS in hemocytes might play a role in viability by renewing hemocytes and antioxidative stress response for new exoskeleton synthesis during the molt cycle of shrimp.[Abstract] [Full Text] [Related] [New Search]