These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Electron paramagnetic resonance investigation of photosynthetic reaction centers from Rhodobacter sphaeroides R-26 in which Fe2+ was replaced by Cu2+. Determination of hyperfine interactions and exchange and dipole-dipole interactions between Cu2+ and QA-.
    Author: Calvo R, Passeggi MC, Isaacson RA, Okamura MY, Feher G.
    Journal: Biophys J; 1990 Jul; 58(1):149-65. PubMed ID: 2166597.
    Abstract:
    We report electron paramagnetic resonance (EPR) experiments in frozen solutions of unreduced and reduced photosynthetic reaction centers (RCs) from Rhodobacter sphaeroides R-26 in which Fe2+ has been chemically replaced by the isotope 65Cu2+. Samples in which the primary quinone acceptor QA is unreduced (Cu2+QA:RCs) give a powder EPR spectrum typical for Cu2+ having axial symmetry, corresponding to a d(x2 - y2) ground state orbital, with g values g parallel = 2.314 +/- 0.001 and g perpendicular = 2.060 +/- 0.003. The spectrum shows a hyperfine structure for the nuclear spin of copper (65I = 3/2) with A parallel = (-167 +/- 1) x 10(-4) cm-1 and /A perpendicular/ = (16 +/- 2) x 10(-4) cm-1, and hyperfine couplings with three nitrogen ligands. This has been verified in samples containing the naturally occurring 14N isotope (l = 1), and in samples where the nitrogen ligands to copper were replaced by the isotope 15N (l = 1/2). We introduce a model for the electronic structure at the position of the metal ion which reflects the recently determined three-dimensional structure of the RCs of Rb. sphaeroides (Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1987. Proc. Natl. Acad. Sci. USA. 84:5730: Allen, J. P., G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees. 1988. Proc. Natl. Acad. Sci. USA, 85:8487) as well as our EPR results. In this model the copper ion is octahedrally coordinated to three nitrogens from histidine residues and to one carboxylate oxygen from a glutamic acid, forming a distorted square in the plane of the d(x2 = y2) ground state orbital. It is also bound to a nitrogen of another histidine and to the other carboxylate oxygen of the same glutamic acid residue, in a direction approximately normal to this plane. The EPR spectrum changes drastically when the quinone acceptor QA is chemically reduced (Cu2+QA-:RCs); the change is due to the exchange and dipole-dipole interactions between the Cu2+ and QA- spins. A model spin Hamiltonian proposed for this exchange coupled cooper-quinone spin dimer accounts well for the observed spectra. From a comparison of the EPR spectra of the Cu2+QA:RC and CU2+QA-:RC complexes we obtain the values /J0/ = (0.30 +/- 0.02) K for the isotropic exchange coupling, and /d/ = (0.010 +/- 0.002) K for the projection of the dipole-dipole interaction tensor on the symmetry axis of the copper spin. From the EPR experiments only the relative signs of J0 and d can be deduced; it was determined that they have the same sign. The magnitude of the exchange coupling calculated for Cu2+QA-:RC is similar to that observed for the Fe2+QA-:RC complex (J0 = -0.43K). The exchange coupling is discussed in terms of the superexchange paths connecting the Cu2+ ion and the quinone radical using the structural data for the RCs of Rb. sphaeroides. From the value of the dipole-dipole interaction, d, we determined R approximately 8.4 A for the weighted distance between the metal ion and the quinone in reduced RCs, which is to be compared with 10 A obtained from x-ray analysis of unreduced RCs. This points to a shortening of the Cu2+ -QA- distance upon reduction of the quinone, as has been proposed by Allen et al. (1988).
    [Abstract] [Full Text] [Related] [New Search]