These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of Rous sarcoma virus RNA processing in chicken and mouse fibroblasts: evidence for double-spliced RNA in nonpermissive mouse cells.
    Author: Berberich SL, Macias M, Zhang L, Turek LP, Stoltzfus CM.
    Journal: J Virol; 1990 Sep; 64(9):4313-20. PubMed ID: 2166819.
    Abstract:
    Rous sarcoma virus, an avian retrovirus, transforms but does not replicate in mammalian cells. To determine to what extent differences in RNA splicing might contribute to this lack of productive infection, cloned proviral DNA derived from the Prague A strain of Rous sarcoma virus was transfected into mouse NIH 3T3 cells, and the viral RNA was compared by RNase protection with viral RNA from transfected chicken embryo fibroblasts by using a tandem antisense riboprobe spanning the three major splice sites. The levels of viral RNA in NIH 3T3 cells compared with those in chicken embryo fibroblasts were lower, but the RNA was spliced at increased efficiency. The difference in the ratio of unspliced to spliced RNA levels was not due to the increased lability of unspliced RNA in NIH 3T3 cells. Although chicken embryo fibroblasts contained equal levels of src and env mRNAs, spliced viral mRNAs in NIH 3T3 cells were almost exclusively src. In NIH 3T3 cells the env mRNA was further processed by using a cryptic 5' splice site located within the env coding sequences and the normal src 3' splice site to form a double-spliced mRNA. This mRNA was identical to the src mRNA, except that a 159-nucleotide sequence from the 5' end of the env gene was inserted at the src splice junction. Smaller amounts of single-spliced RNA were also present in which only the region between the cryptic 5' and src 3' splice sites was spliced out. The aberrant processing of the viral env mRNA in NIH 3T3 cells may in part explain the nonpermissiveness of these cells to productive Rous sarcoma virus infection.
    [Abstract] [Full Text] [Related] [New Search]